3 March, 2021

Transient State Imaging microscopy (TRAST) for cancer diagnosis

Application note: Transient State Imaging or TRAST microscopy for measuring oxygen concentration in cancerous cells.

In the field of biology it is a general consensus that cancerous cells often use other metabolic pathways, than corresponding healthy cells, and thereby consume less oxygen. If it is possible to measure the oxygen levels of cells by fluorescence microscopy this could be exploited as a future tool in clinical cancer diagnosis. However, measuring oxygen concentration of live cells is not totally straight forward. Traditional fluorophores have too short excited state lifetimes (nanoseconds) to be significantly influenced by molecular oxygen collisions, typically taking place in the microsecond time range.

A new technique called Transient State Imaging (TRAST) is set to change the way oxygen concentration of cells is measured, by taking advantage of transitions to and from the dark lowest triplet state (T1) of fluorophores (1). T1 is a photo-induced, long-lived non-fluorescent state, found in essentially all fluorophore molecules. Combining fluorescence microsocpy with a modulated laser source, and systematically varying the modulation characteristcs, it is possible to extract kinetic information about the T1 state.

Read the full application note for all the details:

TRAST imaging microscopy

Share this article!

More resources

Explore our Publications for practical insights on how our customers are leveraging the power of our lasers in their projects.

  • Customer publications

    Product line: Cobolt

    Application: Quantum

    Wavelength: 532 nm, Tunable VIS

    New Discovery in Quantum Technology: Shining Light on Organic Molecules

    scientists have developed organic molecules that can glow brightly and be used in advanced quantum technologies

    Read summary of article "a..."

    Read article at f

  • Customer publications

    Product line: Cobolt

    Application: Quantum

    Wavelength: 594 nm, Femtosecond 1um

    Nanographene Research Unveils Highly Soluble Quantum Dots

    Researchers have unveiled a new family of nanographene materials with the help of the Cobolt Mambo 594 nm laser.

    Read summary of article "Nanographene Research Unveils..."

  • Customer publications

    Product line: Cobolt

    Application: Fluorescence microscopy

    Wavelength: 488 nm

    New Breakthrough in Cellular Imaging with the Cobolt 06-MLD Laser

    Scientists at the KTH Royal Institute of Technology in Sweden, and Calico Life Sciences, have made significant strides in cellular imaging.

    Read summary of article "New Breakthrough in Cellular..."