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= Commercial potential of tunable continuous-wave D =

optical parametric oscillators (CW OPOs) derives
from their wavelength versatility [1]
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" Unprecedented features demonstrated here: M PPLN OPO

- Gap-f ree tuning over > 250 nm in the VIS LEFT: Schematics of optical parametric conversion in a nonlinear medium. The three-wave mixing of

- Watt-level o utp ut power pump, signal and idler is subject to conservation of photon energy and photon momentum. RIGHT: CW

. _ . OPO design tailored for gap-free tuning across the visible range at optimum output power. A 780 nm laser

- Typical linewidth < 500 kHz generates a signal (idler) wave in the range 1000 - 1540 nm (1580-3540 nm). Subsequent second
harmonic generation (SHG) converts signal photons into the range 500 - 765 nm.

DESIGN CONCEPT, CHARACTERISTICS, AND TUNING of o . 2.5 ——— - : 72
MECHANISMS |3 s 2 ‘
g =19 |

= Two-Stage implementation combining longer . i : gE-m"

wavelength pumping with second-harmonic 2 s | <

generation (SHG) of primary OPO output £’ "% R ;*.;?05 22

2.5 s e - |
= Fiber-laser based pump delivering 7 W@ 780 nm , e | ) I |
1000 1100 1200 1300 1400 1500 500 7501000 2000 3500 Time (in minutes)
Wavelength (in nm) Wavelength (in nm)

" Resonator layout f or both OPO and SHG designed LEFT: OPO pump power threshold as a function of OPO signal wavelength. Optimization is crucial to gain

- highest efficiency from the OPO process [2]. MIDDLE: Output power vs. wavelength of fundamental OPO
to match optimum OPO pump threshold and to outputs and SHG output. RIGHT: Power fluctuation of 600 nm SHG output on a 30 min timescale,

maximize SHG conversion rates up to > 60% [2] deploying an internal active power stabilization scheme.
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= System layout is general enough to be further - | |
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adaptable, e.g. by power up-scaling or wavelength ' o 20 = 4300 0 ds0 0 * me oy 150 Y fmene
sh ’f ting Of pump laser LEFT TO RIGHT: Power of the OPO signal output recorded for a coarse scan, frequency stepping at 940 nm

by stepping the intra-cavity etalon, and a truly continuous mode-hop free scan at 940 nm. The overlapping
tuning ranges of the three mechanisms provide gap-free wavelength coverage over > 250 nm in VIS.

TUNABLE CW OPOs AT WORK: CHARACTERIZING
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ensemble of Si-V centers
recorded at two excitation
powers. (b) Photoluminescence

require sufficiently narrow linewidths

PLE count rate (in kc/s)
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with permission from ref. [3] and [4]). o excitation power [4] :
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